Python 파이썬

K리그 축구 승부 예측 프로그램 (Python 부분)

스노(Snow) 2021. 6. 18. 17:59

예전에 진행했던 https://sno-machinelearning.tistory.com/52?category=858218 의 Python 코드입니다.

다른 프로그램 코드는 제가 작성한 것이 아니라서 올리지 않겠습니다.

밑에 있는 코드는 여태까지(그때 기준으로요...) 있었던 경기의 결과로 각 팀들이 홈팀과 원정팀을 갔을 때 어떤 요인이 골에 영향이 가는지 정하고 새로운 홈팀과 원정팀에 대한 득점수를 예측하여 경기를 누가 이길 확률이 높은지 계산하는 코드입니다.

 

if a==1:
    # 필요 패키지 다운로드
    
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker
    import matplotlib.ticker as plticker
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    import os
    import tensorflow as tf
    import statsmodels.formula.api as sm
    from patsy import dmatrices
    import pymysql #pip install PyMySQL
    
            # 2019년 제외 DB 불러오기
            conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
            curs = conn.cursor()
            sql = "select * from not2019" 
            curs.execute(sql)
            
            rows = curs.fetchall()
            
            # Connection 닫기
            conn.close()
            
            # df로 변경
            not2019 = pd.DataFrame(list(rows),columns=['K_NUMBER','K_DAY','HOME','AWAY',\
                                                         'HOME_GOAL','AWAY_GOAL','HOME_SHOT','AWAY_SHOT',\
                                                         'HOME_TSHOT','AWAY_TSHOT','HOME_PASHOT',\
                                                         'AWAY_PASHOT','HOME_PATSHOT','AWAY_PATSHOT',\
                                                         'HOME_DRB','AWAY_DRB','HOME_FSIN','AWAY_FSIN',\
                                                         'HOME_PASS','AWAY_PASS','HOME_KPASS','AWAY_KPASS'\
                                                         ,'HOME_FPASS','AWAY_FPASS','HOME_BPASS',\
                                                         'AWAY_BPASS','HOME_LPASS','AWAY_LPASS',\
                                                         'HOME_CROSS','AWAY_CROSS','HOME_PASSSU',\
                                                         'AWAY_PASSSU','HOME_BATGRD','AWAY_BATGRD',\
                                                         'HOME_BATAIR','AWAY_BATAIR','HOME_TACK',\
                                                         'AWAY_TACK','HOME_INTERSEP','AWAY_INTERSEP',\
                                                         'HOME_FOUL','AWAY_FOUL','HOME_YLLCARD',\
                                                         'AWAY_YLLCARD','HOME_REDCARD','AWAY_REDCARD'])
            # 필요없는 변수 제거 제거
            not2019.drop('K_NUMBER',axis=1, inplace = True)
            not2019.drop('K_DAY',axis=1, inplace = True)
            not2019.drop('HOME_GOAL',axis=1, inplace = True)
            not2019.drop('AWAY_GOAL',axis=1, inplace = True)
            
            # 데이터 형식 변경
            not2019.HOME_SHOT=pd.to_numeric(not2019.HOME_SHOT)
            not2019.AWAY_SHOT=pd.to_numeric(not2019.AWAY_SHOT)
            not2019.HOME_TSHOT=pd.to_numeric(not2019.HOME_TSHOT)
            not2019.AWAY_TSHOT=pd.to_numeric(not2019.AWAY_TSHOT)
            not2019.HOME_PASHOT=pd.to_numeric(not2019.HOME_PASHOT)
            not2019.AWAY_PASHOT=pd.to_numeric(not2019.AWAY_PASHOT)
            not2019.HOME_PATSHOT=pd.to_numeric(not2019.HOME_PATSHOT)
            not2019.AWAY_PATSHOT=pd.to_numeric(not2019.AWAY_PATSHOT)
            not2019.HOME_DRB=pd.to_numeric(not2019.HOME_DRB)
            not2019.AWAY_DRB=pd.to_numeric(not2019.AWAY_DRB)
            not2019.HOME_FSIN=pd.to_numeric(not2019.HOME_FSIN)
            not2019.AWAY_FSIN=pd.to_numeric(not2019.AWAY_FSIN)
            not2019.HOME_PASS=pd.to_numeric(not2019.HOME_PASS)
            not2019.AWAY_PASS=pd.to_numeric(not2019.AWAY_PASS)
            not2019.HOME_KPASS=pd.to_numeric(not2019.HOME_KPASS)
            not2019.AWAY_KPASS=pd.to_numeric(not2019.AWAY_KPASS)
            not2019.HOME_FPASS=pd.to_numeric(not2019.HOME_FPASS)
            not2019.AWAY_FPASS=pd.to_numeric(not2019.AWAY_FPASS)
            not2019.HOME_BPASS=pd.to_numeric(not2019.HOME_BPASS)
            not2019.AWAY_BPASS=pd.to_numeric(not2019.AWAY_BPASS)
            not2019.HOME_LPASS=pd.to_numeric(not2019.HOME_LPASS)
            not2019.AWAY_LPASS=pd.to_numeric(not2019.AWAY_LPASS)
            not2019.HOME_CROSS=pd.to_numeric(not2019.HOME_CROSS)
            not2019.AWAY_CROSS=pd.to_numeric(not2019.AWAY_CROSS)
            not2019.HOME_PASSSU=pd.to_numeric(not2019.HOME_PASSSU)
            not2019.AWAY_PASSSU=pd.to_numeric(not2019.AWAY_PASSSU)
            not2019.HOME_BATGRD=pd.to_numeric(not2019.HOME_BATGRD)
            not2019.AWAY_BATGRD=pd.to_numeric(not2019.AWAY_BATGRD)
            not2019.HOME_BATAIR=pd.to_numeric(not2019.HOME_BATAIR)
            not2019.AWAY_BATAIR=pd.to_numeric(not2019.AWAY_BATAIR)
            not2019.HOME_TACK=pd.to_numeric(not2019.HOME_TACK)
            not2019.AWAY_TACK=pd.to_numeric(not2019.AWAY_TACK)
            not2019.HOME_INTERSEP=pd.to_numeric(not2019.HOME_INTERSEP)
            not2019.AWAY_INTERSEP=pd.to_numeric(not2019.AWAY_INTERSEP)
            not2019.HOME_FOUL=pd.to_numeric(not2019.HOME_FOUL)
            not2019.AWAY_FOUL=pd.to_numeric(not2019.AWAY_FOUL)
            not2019.HOME_YLLCARD=pd.to_numeric(not2019.HOME_YLLCARD)
            not2019.AWAY_YLLCARD=pd.to_numeric(not2019.AWAY_YLLCARD)
            not2019.HOME_REDCARD=pd.to_numeric(not2019.HOME_REDCARD)
            not2019.AWAY_REDCARD=pd.to_numeric(not2019.AWAY_REDCARD)
            
            ## 홈 PA 유효슈팅 구하기
            ## 다중 선형 회귀 분석 (Multiple regression)
            # 홈 PA샷의 상관계수표
            corr = not2019.corr(method = 'pearson')
        
            # 홈 PATSHOT의 선형회귀표 (모든 변수들을 넣은 상태에서 변수선택법 중 후진제거법을 사용)
            model = sm.ols(formula = 'HOME_PATSHOT ~ HOME_SHOT + HOME_TSHOT + HOME_PASHOT + HOME_DRB + HOME_KPASS',data=not2019).fit()
            #model.summary()
        
            # 선택된 변수들을 메트릭스 표로 변경
            multi_y = np.array(not2019.HOME_PATSHOT)
            df_x = not2019[["HOME_SHOT", "HOME_TSHOT", "HOME_PASHOT", "HOME_DRB" , "HOME_KPASS"]]
            multi_x = df_x.as_matrix()

            # 모델 틀 설계
            with tf.Graph().as_default() as multi_regresstion:
                num_x = 5
                X = tf.placeholder(tf.float32, [None, num_x], name='X')
                Y = tf.placeholder(tf.float32, [None], name='Y')
                lr = tf.constant(1e-3,tf.float32)
                W = tf.get_variable("W", [1,num_x], tf.float32)
                b = tf.get_variable("b",dtype=tf.float32,initializer=tf.constant(1.,tf.float32))
                
                h = tf.matmul(W,X,transpose_b=True) + b
                cost = tf.reduce_mean(tf.square(tf.subtract(h,Y)))
                train = tf.train.GradientDescentOptimizer(lr).minimize(cost)
                
            # 모델 틀에 메트릭스를 넣음
            with tf.Session(graph=multi_regresstion) as sess:
                sess.run(tf.global_variables_initializer())
                for i in range(3000):
                    _,l = sess.run([train,cost],feed_dict={X:multi_x,Y:multi_y})
                W_multi, b_multi = sess.run([W,b])
        
            # 계수 구하기
            for j in range(len(multi_x)):
                sum = 0
                for i in range(5):
                    sum += W_multi[0][i] * multi_x[j,i]
                
            # 홈 PA유효슈팅 계수 저장
            HOME_W_multi,HOME_b_multi = W_multi,b_multi
        
            ## 어웨이 PA 유효슈팅 구하기
        
            # 어웨이 선형회귀표(변수선택법 = 후진제거법)
            Away_model = sm.ols(formula = 'AWAY_PATSHOT ~ AWAY_SHOT + AWAY_TSHOT + AWAY_PASHOT + AWAY_DRB + AWAY_KPASS',data=not2019).fit()
        
            multi_y = np.array(not2019.AWAY_PATSHOT)
            df_x = not2019[["AWAY_SHOT", "AWAY_TSHOT", "AWAY_PASHOT", "AWAY_DRB" , "AWAY_KPASS"]]
        
            multi_x = df_x.as_matrix()
        
            with tf.Graph().as_default() as multi_regresstion:
                num_x = 5
                X = tf.placeholder(tf.float32, [None, num_x], name='X')
                Y = tf.placeholder(tf.float32, [None], name='Y')
                lr = tf.constant(1e-3,tf.float32)
                W = tf.get_variable("W", [1,num_x], tf.float32)
                b = tf.get_variable("b",dtype=tf.float32,initializer=tf.constant(1.,tf.float32))
                
                h = tf.matmul(W,X,transpose_b=True) + b
                cost = tf.reduce_mean(tf.square(tf.subtract(h,Y)))
                train = tf.train.GradientDescentOptimizer(lr).minimize(cost)
                
            with tf.Session(graph=multi_regresstion) as sess:
                sess.run(tf.global_variables_initializer())
                for i in range(3000):
                    _,l = sess.run([train,cost],feed_dict={X:multi_x,Y:multi_y})
                W_multi, b_multi = sess.run([W,b])
                
            for j in range(len(multi_x)):
                sum = 0
                for i in range(5):
                    sum += W_multi[0][i] * multi_x[j,i]
                    
            # 어웨이 PA유효슈팅 계수
            AWAY_W_multi,AWAY_b_multi = W_multi,b_multi
            
            ## 새로운 데이터 예측
            conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
            curs = conn.cursor()
            
            sql = "select * from rawdb"
            curs.execute(sql)
            
            rowdata = curs.fetchall()
            
            if rowdata != ():
                sql = "DELETE FROM rawdb WHERE K_NUMBER = '%s'" % '0'
                curs.execute(sql)
                conn.commit()
            
            # Connection 닫기
            conn.close()
            
            try:
                if rowdata != ():
                    conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                       db='server', charset='utf8')
                    curs = conn.cursor()
                
                    sql = "select * from kleague" # 경기 번호불러오기 위한 데이터
                    curs.execute(sql)
                
                    raw = curs.fetchall()
                
                    num = (int(raw[-1][0]))+1
            except:
                rowdata = ()
        
            # rowdf 만들기
            try:
                if rowdata != ():
                    rowdf1 = pd.DataFrame(list(rowdata),columns=['K_NUMBER','K_DAY','HOME','AWAY',\
                                                             'HOME_GOAL','AWAY_GOAL','HOME_SHOT','AWAY_SHOT',\
                                                             'HOME_TSHOT','AWAY_TSHOT','HOME_PASHOT',\
                                                             'AWAY_PASHOT','HOME_PATSHOT','AWAY_PATSHOT',\
                                                             'HOME_DRB','AWAY_DRB','HOME_FSIN','AWAY_FSIN',\
                                                             'HOME_PASS','AWAY_PASS','HOME_KPASS','AWAY_KPASS'\
                                                             ,'HOME_FPASS','AWAY_FPASS','HOME_BPASS',\
                                                             'AWAY_BPASS','HOME_LPASS','AWAY_LPASS',\
                                                             'HOME_CROSS','AWAY_CROSS','HOME_PASSSU',\
                                                             'AWAY_PASSSU','HOME_BATGRD','AWAY_BATGRD',\
                                                             'HOME_BATAIR','AWAY_BATAIR','HOME_TACK',\
                                                             'AWAY_TACK','HOME_INTERSEP','AWAY_INTERSEP',\
                                                             'HOME_FOUL','AWAY_FOUL','HOME_YLLCARD',\
                                                             'AWAY_YLLCARD','HOME_REDCARD','AWAY_REDCARD'])
                    rowdf = rowdf1[0:1]
            except:
                rowdata = ()
            
            try:
                if rowdata != ():
                    rowdf['K_NUMBER'] = num
                    rowdf['K_DAY'] = rowdf['K_DAY'].astype(object)
                    rowdf['HOME'] = rowdf['HOME'].astype(object)
                    rowdf['AWAY'] = rowdf['AWAY'].astype(object)
                    rowdf.HOME_GOAL=pd.to_numeric(rowdf.HOME_GOAL)
                    rowdf.AWAY_GOAL=pd.to_numeric(rowdf.AWAY_GOAL)
                    rowdf.HOME_SHOT=pd.to_numeric(rowdf.HOME_SHOT)
                    rowdf.AWAY_SHOT=pd.to_numeric(rowdf.AWAY_SHOT)
                    rowdf.HOME_TSHOT=pd.to_numeric(rowdf.HOME_TSHOT)
                    rowdf.AWAY_TSHOT=pd.to_numeric(rowdf.AWAY_TSHOT)
                    rowdf.HOME_PASHOT=pd.to_numeric(rowdf.HOME_PASHOT)
                    rowdf.AWAY_PASHOT=pd.to_numeric(rowdf.AWAY_PASHOT)
                    rowdf.HOME_PATSHOT=pd.to_numeric(rowdf.HOME_PATSHOT)
                    rowdf.AWAY_PATSHOT=pd.to_numeric(rowdf.AWAY_PATSHOT)
                    rowdf.HOME_DRB=pd.to_numeric(rowdf.HOME_DRB)
                    rowdf.AWAY_DRB=pd.to_numeric(rowdf.AWAY_DRB)
                    rowdf.HOME_FSIN=pd.to_numeric(rowdf.HOME_FSIN)
                    rowdf.AWAY_FSIN=pd.to_numeric(rowdf.AWAY_FSIN)
                    rowdf.HOME_PASS=pd.to_numeric(rowdf.HOME_PASS)
                    rowdf.AWAY_PASS=pd.to_numeric(rowdf.AWAY_PASS)
                    rowdf.HOME_KPASS=pd.to_numeric(rowdf.HOME_KPASS)
                    rowdf.AWAY_KPASS=pd.to_numeric(rowdf.AWAY_KPASS)
                    rowdf.HOME_FPASS=pd.to_numeric(rowdf.HOME_FPASS)
                    rowdf.AWAY_FPASS=pd.to_numeric(rowdf.AWAY_FPASS)
                    rowdf.HOME_BPASS=pd.to_numeric(rowdf.HOME_BPASS)
                    rowdf.AWAY_BPASS=pd.to_numeric(rowdf.AWAY_BPASS)
                    rowdf.HOME_LPASS=pd.to_numeric(rowdf.HOME_LPASS)
                    rowdf.AWAY_LPASS=pd.to_numeric(rowdf.AWAY_LPASS)
                    rowdf.HOME_CROSS=pd.to_numeric(rowdf.HOME_CROSS)
                    rowdf.AWAY_CROSS=pd.to_numeric(rowdf.AWAY_CROSS)
                    rowdf.HOME_PASSSU=pd.to_numeric(rowdf.HOME_PASSSU)
                    rowdf.AWAY_PASSSU=pd.to_numeric(rowdf.AWAY_PASSSU)
                    rowdf.HOME_BATGRD=pd.to_numeric(rowdf.HOME_BATGRD)
                    rowdf.AWAY_BATGRD=pd.to_numeric(rowdf.AWAY_BATGRD)
                    rowdf.HOME_BATAIR=pd.to_numeric(rowdf.HOME_BATAIR)
                    rowdf.AWAY_BATAIR=pd.to_numeric(rowdf.AWAY_BATAIR)
                    rowdf.HOME_TACK=pd.to_numeric(rowdf.HOME_TACK)
                    rowdf.AWAY_TACK=pd.to_numeric(rowdf.AWAY_TACK)
                    rowdf.HOME_INTERSEP=pd.to_numeric(rowdf.HOME_INTERSEP)
                    rowdf.AWAY_INTERSEP=pd.to_numeric(rowdf.AWAY_INTERSEP)
                    rowdf.HOME_FOUL=pd.to_numeric(rowdf.HOME_FOUL)
                    rowdf.AWAY_FOUL=pd.to_numeric(rowdf.AWAY_FOUL)
                    rowdf.HOME_YLLCARD=pd.to_numeric(rowdf.HOME_YLLCARD)
                    rowdf.AWAY_YLLCARD=pd.to_numeric(rowdf.AWAY_YLLCARD)
                    rowdf.HOME_REDCARD=pd.to_numeric(rowdf.HOME_REDCARD)
                    rowdf.AWAY_REDCARD=pd.to_numeric(rowdf.AWAY_REDCARD)
            except:
                rowdata = ()
            if rowdata != ():
                rowdf.HOME_PATSHOT = HOME_W_multi[0][0]*rowdf.HOME_SHOT+HOME_W_multi[0][1]*rowdf.HOME_TSHOT+\
                HOME_W_multi[0][2]*rowdf.HOME_PASHOT+HOME_W_multi[0][3]*rowdf.HOME_DRB+HOME_W_multi[0][4]*\
                rowdf.HOME_KPASS+HOME_b_multi
                rowdf["HOME_PATSHOT"] = rowdf["HOME_PATSHOT"].astype(int)
                rowdf.AWAY_PATSHOT = AWAY_W_multi[0][0]*rowdf.AWAY_SHOT+AWAY_W_multi[0][1]*rowdf.AWAY_TSHOT+\
                AWAY_W_multi[0][2]*rowdf.AWAY_PASHOT+AWAY_W_multi[0][3]*rowdf.AWAY_DRB+AWAY_W_multi[0][4]*\
                rowdf.AWAY_KPASS+AWAY_b_multi
                rowdf["AWAY_PATSHOT"] = rowdf["AWAY_PATSHOT"].astype(int)
                
                for i in range(len(rowdf.HOME_PATSHOT)):
                    if rowdf.HOME_PATSHOT[i]>min(rowdf.HOME_TSHOT[i],rowdf.HOME_PASHOT[i]):
                        rowdf.HOME_PATSHOT[i]=min(rowdf.HOME_TSHOT[i],rowdf.HOME_PASHOT[i])
                for i in range(len(rowdf.AWAY_PATSHOT)):
                    if rowdf.AWAY_PATSHOT[i]>min(rowdf.AWAY_TSHOT[i],rowdf.AWAY_PASHOT[i]):
                        rowdf.AWAY_PATSHOT[i]=min(rowdf.AWAY_TSHOT[i],rowdf.AWAY_PASHOT[i])
                datarow = pd.DataFrame(rowdf)
            if rowdata != ():
                rowdf['K_NUMBER'] = rowdf['K_NUMBER'].astype(str)
                rowdf['K_DAY'] = rowdf['K_DAY'].astype(str)
                rowdf['HOME'] = rowdf['HOME'].astype(str)
                rowdf['AWAY'] = rowdf['AWAY'].astype(str)
                rowdf['HOME_GOAL'] = rowdf['HOME_GOAL'].astype(str)
                rowdf['AWAY_GOAL'] = rowdf['AWAY_GOAL'].astype(str)
                rowdf['HOME_SHOT'] = rowdf['HOME_SHOT'].astype(str)
                rowdf['AWAY_SHOT'] = rowdf['AWAY_SHOT'].astype(str)
                rowdf['HOME_TSHOT'] = rowdf['HOME_TSHOT'].astype(str)
                rowdf['AWAY_TSHOT'] = rowdf['AWAY_TSHOT'].astype(str)
                rowdf['HOME_PASHOT'] = rowdf['HOME_PASHOT'].astype(str)
                rowdf['AWAY_PASHOT'] = rowdf['AWAY_PASHOT'].astype(str)
                rowdf['HOME_PATSHOT'] = rowdf['HOME_PATSHOT'].astype(str)
                rowdf['AWAY_PATSHOT'] = rowdf['AWAY_PATSHOT'].astype(str)
                rowdf['HOME_DRB'] = rowdf['HOME_DRB'].astype(str)
                rowdf['AWAY_DRB'] = rowdf['AWAY_DRB'].astype(str)
                rowdf['HOME_FSIN'] = rowdf['HOME_FSIN'].astype(str)
                rowdf['AWAY_FSIN'] = rowdf['AWAY_FSIN'].astype(str)
                rowdf['HOME_PASS'] = rowdf['HOME_PASS'].astype(str)
                rowdf['AWAY_PASS'] = rowdf['AWAY_PASS'].astype(str)
                rowdf['HOME_KPASS'] = rowdf['HOME_KPASS'].astype(str)
                rowdf['AWAY_KPASS'] = rowdf['AWAY_KPASS'].astype(str)
                rowdf['HOME_FPASS'] = rowdf['HOME_FPASS'].astype(str)
                rowdf['AWAY_FPASS'] = rowdf['AWAY_FPASS'].astype(str)
                rowdf['HOME_BPASS'] = rowdf['HOME_BPASS'].astype(str)
                rowdf['AWAY_BPASS'] = rowdf['AWAY_BPASS'].astype(str)
                rowdf['HOME_LPASS'] = rowdf['HOME_LPASS'].astype(str)
                rowdf['AWAY_LPASS'] = rowdf['AWAY_LPASS'].astype(str)
                rowdf['HOME_CROSS'] = rowdf['HOME_CROSS'].astype(str)
                rowdf['AWAY_CROSS'] = rowdf['AWAY_CROSS'].astype(str)
                rowdf['HOME_PASSSU'] = rowdf['HOME_PASSSU'].astype(str)
                rowdf['AWAY_PASSSU'] = rowdf['AWAY_PASSSU'].astype(str)
                rowdf['HOME_BATGRD'] = rowdf['HOME_BATGRD'].astype(str)
                rowdf['AWAY_BATGRD'] = rowdf['AWAY_BATGRD'].astype(str)
                rowdf['HOME_BATAIR'] = rowdf['HOME_BATAIR'].astype(str)
                rowdf['AWAY_BATAIR'] = rowdf['AWAY_BATAIR'].astype(str)
                rowdf['HOME_TACK'] = rowdf['HOME_TACK'].astype(str)
                rowdf['AWAY_TACK'] = rowdf['AWAY_TACK'].astype(str)
                rowdf['HOME_INTERSEP'] = rowdf['HOME_INTERSEP'].astype(str)
                rowdf['AWAY_INTERSEP'] = rowdf['AWAY_INTERSEP'].astype(str)
                rowdf['HOME_FOUL'] = rowdf['HOME_FOUL'].astype(str)
                rowdf['AWAY_FOUL'] = rowdf['AWAY_FOUL'].astype(str)
                rowdf['HOME_YLLCARD'] = rowdf['HOME_YLLCARD'].astype(str)
                rowdf['AWAY_YLLCARD'] = rowdf['AWAY_YLLCARD'].astype(str)
                rowdf['HOME_REDCARD'] = rowdf['HOME_REDCARD'].astype(str)
                rowdf['AWAY_REDCARD'] = rowdf['AWAY_REDCARD'].astype(str)
            if rowdata != ():
                li = np.array(rowdf)
                li2 = li[0]
                tu=""
                for i in li2:
                    tu = tu + "'"+ i + "',"    
            if rowdata != ():
                names = "K_NUMBER,K_DAY,HOME,AWAY,HOME_GOAL,AWAY_GOAL,HOME_SHOT,AWAY_SHOT,\
                HOME_TSHOT,AWAY_TSHOT,HOME_PASHOT,AWAY_PASHOT,HOME_PATSHOT,AWAY_PATSHOT,\
                HOME_DRB,AWAY_DRB,HOME_FSIN,AWAY_FSIN,HOME_PASS,AWAY_PASS,HOME_KPASS,AWAY_KPASS,\
                HOME_FPASS,AWAY_FPASS,HOME_BPASS,AWAY_BPASS,HOME_LPASS,AWAY_LPASS,\
                HOME_CROSS,AWAY_CROSS,HOME_PASSSU,AWAY_PASSSU,HOME_BATGRD,AWAY_BATGRD,\
                HOME_BATAIR,AWAY_BATAIR,HOME_TACK,AWAY_TACK,HOME_INTERSEP,AWAY_INTERSEP,\
                HOME_FOUL,AWAY_FOUL,HOME_YLLCARD,AWAY_YLLCARD,HOME_REDCARD,AWAY_REDCARD"
        
                sqls= "INSERT INTO kleague ("+names+") VALUES ("+tu[:-1]+")"
            
            # 만약 값이 여러개 들어가 있을 시
            if rowdata != ():
                if (len(rowdata)) > 1:
                    rowdf2 = rowdf1[1:]
                    rowdf2.K_NUMBER = rowdf2.K_NUMBER-1
                    
                    for i in range(len(rowdf2.K_NUMBER)):
                        conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
                        curs = conn.cursor()
            
                        sql3= "UPDATE rawdb SET K_NUMBER='%s' WHERE K_NUMBER ='%s'" % (str((int(rowdata[i+1][0])-1)),str((int(rowdata[i+1][0]))))
                        curs.execute(sql3)
                        conn.commit()
                        conn.close()
                    
            if rowdata != ():
                conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
                curs = conn.cursor()
            
                sql = sqls
                curs.execute(sql)
                conn.commit()
            
                # Connection 닫기
                conn.close()
                rowdata = ()
        
            ## 승부예측
    
    
    
            conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
            curs = conn.cursor()
            
            sql = "select * from kleague" #2019년 제외 DB 불러오기
            curs.execute(sql)
            
            k_raw = curs.fetchall()
            
            # Connection 닫기
            conn.close()
            
            results = pd.DataFrame(list(k_raw),columns=['K_NUMBER','K_DAY','HOME','AWAY',\
                                                         'HOME_GOAL','AWAY_GOAL','HOME_SHOT','AWAY_SHOT',\
                                                         'HOME_TSHOT','AWAY_TSHOT','HOME_PASHOT',\
                                                         'AWAY_PASHOT','HOME_PATSHOT','AWAY_PATSHOT',\
                                                         'HOME_DRB','AWAY_DRB','HOME_FSIN','AWAY_FSIN',\
                                                         'HOME_PASS','AWAY_PASS','HOME_KPASS','AWAY_KPASS'\
                                                         ,'HOME_FPASS','AWAY_FPASS','HOME_BPASS',\
                                                         'AWAY_BPASS','HOME_LPASS','AWAY_LPASS',\
                                                         'HOME_CROSS','AWAY_CROSS','HOME_PASSSU',\
                                                         'AWAY_PASSSU','HOME_BATGRD','AWAY_BATGRD',\
                                                         'HOME_BATAIR','AWAY_BATAIR','HOME_TACK',\
                                                         'AWAY_TACK','HOME_INTERSEP','AWAY_INTERSEP',\
                                                         'HOME_FOUL','AWAY_FOUL','HOME_YLLCARD',\
                                                         'AWAY_YLLCARD','HOME_REDCARD','AWAY_REDCARD'])
        
            results['K_NUMBER'] = results['K_NUMBER'].astype(int)
            results['K_DAY'] = results['K_DAY'].astype(object)
            results['HOME'] = results['HOME'].astype(object)
            results['AWAY'] = results['AWAY'].astype(object)
            results['HOME_GOAL'] = results['HOME_GOAL'].astype(int)
            results['AWAY_GOAL'] = results['AWAY_GOAL'].astype(int)
            results['HOME_SHOT'] = results['HOME_SHOT'].astype(int)
            results['AWAY_SHOT'] = results['AWAY_SHOT'].astype(int)
            results['HOME_TSHOT'] = results['HOME_TSHOT'].astype(int)
            results['AWAY_TSHOT'] = results['AWAY_TSHOT'].astype(int)
            results['HOME_PASHOT'] = results['HOME_PASHOT'].astype(int)
            results['AWAY_PASHOT'] = results['AWAY_PASHOT'].astype(int)
            results['HOME_PATSHOT'] = results['HOME_PATSHOT'].astype(int)
            results['AWAY_PATSHOT'] = results['AWAY_PATSHOT'].astype(int)
            results['HOME_DRB'] = results['HOME_DRB'].astype(int)
            results['AWAY_DRB'] = results['AWAY_DRB'].astype(int)
            results['HOME_FSIN'] = results['HOME_FSIN'].astype(int)
            results['AWAY_FSIN'] = results['AWAY_FSIN'].astype(int)
            results['HOME_PASS'] = results['HOME_PASS'].astype(int)
            results['AWAY_PASS'] = results['AWAY_PASS'].astype(int)
            results['HOME_KPASS'] = results['HOME_KPASS'].astype(int)
            results['AWAY_KPASS'] = results['AWAY_KPASS'].astype(int)
            results['HOME_FPASS'] = results['HOME_FPASS'].astype(int)
            results['AWAY_FPASS'] = results['AWAY_FPASS'].astype(int)
            results['HOME_BPASS'] = results['HOME_BPASS'].astype(int)
            results['AWAY_BPASS'] = results['AWAY_BPASS'].astype(int)
            results['HOME_LPASS'] = results['HOME_LPASS'].astype(int)
            results['AWAY_LPASS'] = results['AWAY_LPASS'].astype(int)
            results['HOME_CROSS'] = results['HOME_CROSS'].astype(int)
            results['AWAY_CROSS'] = results['AWAY_CROSS'].astype(int)
            results['HOME_PASSSU'] = results['HOME_PASSSU'].astype(float)
            results['AWAY_PASSSU'] = results['AWAY_PASSSU'].astype(float)
            results['HOME_BATGRD'] = results['HOME_BATGRD'].astype(int)
            results['AWAY_BATGRD'] = results['AWAY_BATGRD'].astype(int)
            results['HOME_BATAIR'] = results['HOME_BATAIR'].astype(int)
            results['AWAY_BATAIR'] = results['AWAY_BATAIR'].astype(int)
            results['HOME_TACK'] = results['HOME_TACK'].astype(int)
            results['AWAY_TACK'] = results['AWAY_TACK'].astype(int)
            results['HOME_INTERSEP'] = results['HOME_INTERSEP'].astype(int)
            results['AWAY_INTERSEP'] = results['AWAY_INTERSEP'].astype(int)
            results['HOME_FOUL'] = results['HOME_FOUL'].astype(int)
            results['AWAY_FOUL'] = results['AWAY_FOUL'].astype(int)
            results['HOME_YLLCARD'] = results['HOME_YLLCARD'].astype(int)
            results['AWAY_YLLCARD'] = results['AWAY_YLLCARD'].astype(int)
            results['HOME_REDCARD'] = results['HOME_REDCARD'].astype(int)
            results['AWAY_REDCARD'] = results['AWAY_REDCARD'].astype(int)
    
            results.HOME=results.HOME.str.capitalize()
            results.AWAY=results.AWAY.str.capitalize()
            
            results_backup = results
        
        
            ## 홈 골 예측
        
            HOME_GOALS = results.HOME_GOAL
            for i in range (len(HOME_GOALS)):
                if results.HOME_GOAL[i]>3:
                    HOME_GOALS[i]=3
                else:
                    HOME_GOALS[i] = results.HOME_GOAL[i]
            results.loc[:,'HOME_GOALS'] = pd.Series(HOME_GOALS,index=results.index)
            
            
            y, X = dmatrices('HOME_GOALS ~  HOME_TSHOT + HOME_PATSHOT +\
            HOME_FSIN + HOME_PASS + HOME_BPASS + \
            HOME_CROSS + HOME_PASSSU + HOME_BATAIR',results, return_type="dataframe" )
            
            y = np.ravel(y)
            
            RegModel = LogisticRegression()
            RegModel = RegModel.fit(X,y)
            
            RegModel.score(X,y)
            dfCoef = pd.DataFrame({'coef':X.columns, 'weight':RegModel.coef_[0]})
        
            def homestats3(hometeam):
                home_count = []
                home_round = []
                for i in range (len(results['HOME'])):
                    if results.HOME[i] == hometeam:
                        home_count.append(results.index[i])
                for i in range(3):
                    home_round.append(max(home_count))
                    home_count.remove(max(home_count))
                return(home_round)
        
            def homestats5(hometeam):
                home_count = []
                home_round = []
                for i in range (len(results['HOME'])):
                    if results.HOME[i] == hometeam:
                        home_count.append(results.index[i])
                for i in range(5):
                    home_round.append(max(home_count))
                    home_count.remove(max(home_count))
                return(home_round)

            def homecount(hometeam):
                home3 = results.loc[homestats3(hometeam)]
                home3 = home3.reset_index()
                HOME_TSHOT3 = (home3.HOME_TSHOT[0]+home3.HOME_TSHOT[1]+home3.HOME_TSHOT[2])/3
                HOME_PATSHOT3 = (home3.HOME_PATSHOT[0]+home3.HOME_PATSHOT[1]+home3.HOME_PATSHOT[2])/3
                HOME_FSIN3 = (home3.HOME_FSIN[0]+home3.HOME_FSIN[1]+home3.HOME_FSIN[2])/3
                HOME_PASS3 = (home3.HOME_PASS[0]+home3.HOME_PASS[1]+home3.HOME_PASS[2])/3
                HOME_BPASS3 = (home3.HOME_BPASS[0]+home3.HOME_BPASS[1]+home3.HOME_BPASS[2])/3
                HOME_CROSS3 = (home3.HOME_CROSS[0]+home3.HOME_CROSS[1]+home3.HOME_CROSS[2])/3
                HOME_PASSSU3 = (home3.HOME_PASSSU[0]+home3.HOME_PASSSU[1]+home3.HOME_PASSSU[2])/3
                HOME_BATAIR3 = (home3.HOME_BATAIR[0]+home3.HOME_BATAIR[1]+home3.HOME_BATAIR[2])/3
            
                home5 = results.loc[homestats5(hometeam)]
                home5 = home5.reset_index()
                HOME_TSHOT5 = (home5.HOME_TSHOT[0]+home5.HOME_TSHOT[1]+home5.HOME_TSHOT[2]+home5.HOME_TSHOT[3]+home5.HOME_TSHOT[4])/5
                HOME_PATSHOT5 = (home5.HOME_PATSHOT[0]+home5.HOME_PATSHOT[1]+home5.HOME_PATSHOT[2]+home5.HOME_PATSHOT[3]+home5.HOME_PATSHOT[4])/5
                HOME_FSIN5 = (home5.HOME_FSIN[0]+home5.HOME_FSIN[1]+home5.HOME_FSIN[2]+home5.HOME_FSIN[3]+home5.HOME_FSIN[4])/5
                HOME_PASS5 = (home5.HOME_PASS[0]+home5.HOME_PASS[1]+home5.HOME_PASS[2]+home5.HOME_PASS[3]+home5.HOME_PASS[4])/5
                HOME_BPASS5 = (home5.HOME_BPASS[0]+home5.HOME_BPASS[1]+home5.HOME_BPASS[2]+home5.HOME_BPASS[3]+home5.HOME_BPASS[4])/5
                HOME_CROSS5 = (home5.HOME_CROSS[0]+home5.HOME_CROSS[1]+home5.HOME_CROSS[2]+home5.HOME_CROSS[3]+home5.HOME_CROSS[4])/5
                HOME_PASSSU5 = (home5.HOME_PASSSU[0]+home5.HOME_PASSSU[1]+home5.HOME_PASSSU[2]+home5.HOME_PASSSU[3]+home5.HOME_PASSSU[4])/5
                HOME_BATAIR5 = (home5.HOME_BATAIR[0]+home5.HOME_BATAIR[1]+home5.HOME_BATAIR[2]+home5.HOME_BATAIR[3]+home5.HOME_BATAIR[4])/5
            
                HOME_TSHOT = (HOME_TSHOT3 + HOME_TSHOT5)/2
                HOME_PATSHOT = (HOME_PATSHOT3 + HOME_PATSHOT5)/2
                HOME_FSIN = (HOME_FSIN3 + HOME_FSIN5)/2
                HOME_PASS = (HOME_PASS3 + HOME_PASS5)/2
                HOME_BPASS = (HOME_BPASS3 + HOME_BPASS5)/2
                HOME_CROSS = (HOME_CROSS3 + HOME_CROSS5)/2
                HOME_PASSSU = (HOME_PASSSU3 + HOME_PASSSU5)/2
                HOME_BATAIR = (HOME_BATAIR3 + HOME_BATAIR5)/2
            
                HOME_count = RegModel.predict_proba([[0,HOME_TSHOT,HOME_PATSHOT,HOME_FSIN,HOME_PASS,HOME_BPASS,HOME_CROSS,HOME_PASSSU,HOME_BATAIR]])
                return(HOME_count)
        
            ## 어웨이 골 예측
        
            AWAY_GOALS = results.AWAY_GOAL
            for i in range (len(AWAY_GOALS)):
                if results.AWAY_GOAL[i]>3:
                    AWAY_GOALS[i]=3
                else:
                    AWAY_GOALS[i] = results.AWAY_GOAL[i]
            results.loc[:,'AWAY_GOALS'] = pd.Series(AWAY_GOALS,index=results.index)
            
            y2, X2 = dmatrices('AWAY_GOALS ~  AWAY_SHOT + AWAY_TSHOT + \
            AWAY_PATSHOT + AWAY_FSIN + AWAY_PASS + AWAY_BPASS',results, return_type="dataframe" )
        
            y2 = np.ravel(y2)
        
            RegModel2 = LogisticRegression()
            RegModel2 = RegModel2.fit(X2,y2)
            
            RegModel2.score(X2,y2)
            
            dfCoef2 = pd.DataFrame({'coef':X2.columns, 'weight':RegModel2.coef_[0]})
            
            def awaystats3(awayteam):
                away_count = []
                away_round = []
                for i in range (len(results['AWAY'])):
                    if results.AWAY[i] == awayteam:
                        away_count.append(results.index[i])
                for i in range(3):
                    away_round.append(max(away_count))
                    away_count.remove(max(away_count))
                return(away_round)
    
            def awaystats5(awayteam):
                away_count = []
                away_round = []
                for i in range (len(results['AWAY'])):
                    if results.AWAY[i] == awayteam:
                        away_count.append(results.index[i])
                for i in range(5):
                    away_round.append(max(away_count))
                    away_count.remove(max(away_count))
                return(away_round)
        
            def awaycount(awayteam):
                away3 = results.loc[awaystats3(awayteam)]
                away3 = away3.reset_index()
                AWAY_SHOT3 = (away3.AWAY_SHOT[0]+away3.AWAY_SHOT[1]+away3.AWAY_SHOT[2])/3
                AWAY_TSHOT3 = (away3.AWAY_TSHOT[0]+away3.AWAY_TSHOT[1]+away3.AWAY_TSHOT[2])/3
                AWAY_PATSHOT3 = (away3.AWAY_PATSHOT[0]+away3.AWAY_PATSHOT[1]+away3.AWAY_PATSHOT[2])/3
                AWAY_FSIN3 = (away3.AWAY_FSIN[0]+away3.AWAY_FSIN[1]+away3.AWAY_FSIN[2])/3
                AWAY_PASS3 = (away3.AWAY_PASS[0]+away3.AWAY_PASS[1]+away3.AWAY_PASS[2])/3
                AWAY_BPASS3 = (away3.AWAY_BPASS[0]+away3.AWAY_BPASS[1]+away3.AWAY_BPASS[2])/3
                
                away5 = results.loc[awaystats5(awayteam)]
                away5 = away5.reset_index()
                AWAY_SHOT5 = (away5.AWAY_SHOT[0]+away5.AWAY_SHOT[1]+away5.AWAY_SHOT[2]+away5.AWAY_SHOT[3]+away5.AWAY_SHOT[4])/5
                AWAY_TSHOT5 = (away5.AWAY_TSHOT[0]+away5.AWAY_TSHOT[1]+away5.AWAY_TSHOT[2]+away5.AWAY_TSHOT[3]+away5.AWAY_TSHOT[4])/5
                AWAY_PATSHOT5 = (away5.AWAY_PATSHOT[0]+away5.AWAY_PATSHOT[1]+away5.AWAY_PATSHOT[2]+away5.AWAY_PATSHOT[3]+away5.AWAY_PATSHOT[4])/5
                AWAY_FSIN5 = (away5.AWAY_FSIN[0]+away5.AWAY_FSIN[1]+away5.AWAY_FSIN[2]+away5.AWAY_FSIN[3]+away5.AWAY_FSIN[4])/5
                AWAY_PASS5 = (away5.AWAY_PASS[0]+away5.AWAY_PASS[1]+away5.AWAY_PASS[2]+away5.AWAY_PASS[3]+away5.AWAY_PASS[4])/5
                AWAY_BPASS5 = (away5.AWAY_BPASS[0]+away5.AWAY_BPASS[1]+away5.AWAY_BPASS[2]+away5.AWAY_BPASS[3]+away5.AWAY_BPASS[4])/5
                
                AWAY_SHOT = (AWAY_SHOT3 + AWAY_SHOT5)/2
                AWAY_TSHOT = (AWAY_TSHOT3 + AWAY_TSHOT5)/2
                AWAY_PATSHOT = (AWAY_PATSHOT3 + AWAY_PATSHOT5)/2
                AWAY_FSIN = (AWAY_FSIN3 + AWAY_FSIN5)/2
                AWAY_PASS = (AWAY_PASS3 + AWAY_PASS5)/2
                AWAY_BPASS = (AWAY_BPASS3 + AWAY_BPASS5)/2
            
                AWAY_count = RegModel2.predict_proba([[0,AWAY_SHOT,AWAY_TSHOT,AWAY_PATSHOT,AWAY_FSIN,AWAY_PASS,AWAY_BPASS]])
                return(AWAY_count)
        
            try:
                if home == home_name.capitalize() and away == away_name.capitalize():
                    future =()
                else :
                    home = home_name.capitalize()
                    away = away_name.capitalize()
                    future = [[knumber,home,away]]
            except:
                future =()
                pass
            try:
                if future != ():
                    
                    home_score = homecount(home)
                    away_score = awaycount(away)
                    
                    HOME = home
                    AWAY = away
                    H0 = (home_score[0][0])
                    H1 = (home_score[0][1])
                    H2 = (home_score[0][2])
                    H3 = (home_score[0][3])
                    A0 = (away_score[0][0])
                    A1 = (away_score[0][1])
                    A2 = (away_score[0][2])
                    A3 = (away_score[0][3])
                
                    Home_data = [H0,H1,H2,H3]
                    h_goal = Home_data.index(max(Home_data))
                    Away_data = [A0,A1,A2,A3]
                    a_goal = Away_data.index(max(Away_data))
                
                    H0 = str(round(H0,4))
                    H1 = str(round(H1,4))
                    H2 = str(round(H2,4))
                    H3 = str(round(H3,4))
                    A0 = str(round(A0,4))
                    A1 = str(round(A1,4))
                    A2 = str(round(A2,4))
                    A3 = str(round(A3,4))
                    
                    if h_goal>a_goal:
                        HDA = 'H'
                    elif h_goal==a_goal:
                        HDA = 'D'
                    elif h_goal<a_goal:
                        HDA = 'A'
                    else:
                        HDA = 'error'
                        
                    h_goal = str(h_goal)
                    a_goal = str(a_goal)
            except:
                future=()
                pass
                    
                    
            if future != ():
                conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
                curs = conn.cursor()
            
                sql = "select * from resultdb" # 경기 번호불러오기 위한 데이터
                curs.execute(sql)
            
                raw = curs.fetchall()
                if raw != ():
                    num = str((int(raw[-1][0]))+1)
                else:
                    num = '0'
                li = [num,HOME,AWAY,HDA,h_goal,a_goal,H0,H1,H2,H3,A0,A1,A2,A3]
                tu=""
                for i in li:
                    tu = tu + "'"+ i + "',"    
                       
            if future != ():
                
                names = "K_NUMBER,HOME,AWAY,WIN,HOME_GOAL,AWAY_GOAL,H0,H1,H2,H3,A0,A1,A2,A3"
            
                sqls= "INSERT INTO resultdb ("+names+") VALUES ("+tu[:-1]+")"
                
            if future != ():
                conn = pymysql.connect(host='125.176.85.154',port=3380, user='root', password='1234',
                                   db='server', charset='utf8')
                curs = conn.cursor()
            
                sql = sqls
                curs.execute(sql)
                conn.commit()
            
                # Connection 닫기
                conn.close()
                rowdata = ()